قاب ها در فضاهای کرین منتج از ‎-w‎مترهای‎ نامنظم

thesis
abstract

‏قاب ها را می توان به صورت ‎‏«پایه های فوق کامل» در نظر گرفت به گونه ای که این خاصیت فوق کامل بودن‏، آن ها را نسبت به پایه های متعامد یکه بسیار انعطاف پذیرتر کرده است. در این پایان نامه بعد از تعاریف اساسی ابتدا با اثبات قضیه ای نشان خواهیم داد که نظریه ی قاب ها برای یک فضای کرین و این نظریه برای فضای هیلبرت مرتبط با آن هم ارز است. بـالاخره ثـابـت مـی کنـیـم که در هر عملگر خود القاء یک به یک و کراندار مانند ‎$ w‎ $‎‏‎ شـرط ‎$ 0 ‎ otin ‎spec(w)‎ $‎‏،‎‎ مـعـادل است بـا بـرابـری فـضـای هیلبرت بـا فـضـای کـریـن مربوطه (یعنی ‎$ ‎h=hw‎ $‎).‎ ‎ ‏سپس ابزار اساسی نظریه ی قاب ها را برای فضای کرین تعریف خواهیم کرد و با استفاده از آن ها به بیان نتایجی می پردازیم.

similar resources

بررسی یک خانواده از قاب ها برای فضاهای کرین

در این پایان نامه تعریفی جدید از قاب ها برای فضاهای کرین ارائه شده است که توسیع مفهوم پایه های متعامد در فضای کرین است. ??j است؛ این قاب با h یک قاب خاص در فضای هیلبرت (h; [; ]) قاب برای فضای کرین ??j یک معین اکیداً ??j سازگارست؛ به این معناست که با یک زوج از زیرفضاهای [; ] ضرب داخلی نامعین ماکزیمال با زیرفضاهای مثبت متفاوت معین می شود. قاب ??j متعامد سازگار است؛ همچنین هر ??j این قاب ها با...

قاب ها در فضای کرین

هدف ما در این پایان نامه بیان یک تعریف برای قاب ها در فضای کرین است، که یک اجتماع از پایه های j- متعامد از فضای کرین می باشد. یک j- قاب برای فضای کرین (h,[.,])، یک قاب برای فضای هیلبرت است. اما با ضرب داخلی نامعین [.,] بدست می آید، به این معنی که بوسیله یک زوج از زیرفضاهای j معین یکنواخت ماکزیمال حساب می شود. همچنین، هر j - قاب شامل یک فرمول سازماندهی شده نامعین برای بردارها در h می باشد، که بو...

15 صفحه اول

p-قاب ها و قاب ها در فضاهای باناخ

یکی از موضوعات گسترده و عمیق در آنالیز نوین قاب ها هستند که توسط بسیاری مورد بحث و مطالعه قرار گرفتند. قاب ها که در فضای هیلبرت تعمیمی از پایه های متعامد یکه هستند به سرعت توسعه یافتند و کارایی خود را نشان دادند. به عنوان نمونه قاب های موجک و گابور امروزه بیش از پیش مورد توجه قرار گرفته اند. در این پایان نامه قاب ها در فضای باناخ جدایی پذیر را مطالعه می کنیم و p-قاب ها و قاب های عملگری برای فضا...

15 صفحه اول

خاصیت کرین _میلمن در فضاهای باناخ

موضوع این پایان نامه روی فضاهای دارای خاصیت کرین- میلمن است. ابتدا به معرفی خاصیت کرین- میلمن یک فضا و معرفی خاصیت کرین- میلمن یک نرم می پردازیم.سپس بررسی می کنیم که چه فضاهایی این خاصیت را دارند و در نهایت نشان می دهیم که اگر ها فضاهای باناخ با خاصیت کرین- میلمن باشند، آنگاه نیز دارای خاصیت کرین- میلمن است. همچنین نشان می دهیم که خاصیت کرین- میلمن یک خاصیت سه فضاست و نیز اگر فضای باناخ x د...

قاب ها و پایه های زیرفضاها در فضاهای هیلبرت

در این پایان نامه‎‎نظریه قاب های ‎‎زیرفضاها را برای زیرفضاهای فضای هیلبرت تفکیک پذیر توسعه می دهیم. نشان خواهیم داد که برای هر قاب پارسوال زیرفضاهای ‎w در فضای هیلبرت h‎، یک فضای هیلبرت k که شامل h است‎ و یک پایه متعامد یکه n که w=p(n) وجود خواهد داشت که p‎ یک تصویر متعامد از k‎ به روی ‎‎h‎ است. یک تعریف جدید از تجزیه همانی اتمی در فضای هیلبرت ارائه می دهیم. ‎در‎ حالت خاص، یک عملگر تجزیه اتمی،...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - دانشکده علوم ریاضی و مهندسی کامپیوتر

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023